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On Jacobi and Jacobi-Like Algorithms 
for a Parallel Computer 

By Ahmed H. Sameh 

Abstract. Many existing algorithms for obtaining the eigenvalues and eigenvectors of 
matrices would make poor use of such a powerful parallel computer as the ILLIAC IV. 
In this paper, Jacobi's algorithm for real symmetric or complex Hermitian matrices, and 
a Jacobi-like algorithm for real nonsymmetric matrices developed by P. J. Eberlein, are 
modified so as to achieve maximum efficiency for the parallel computations. 

1. Introduction. With the advent of parallel computers, the study of compu- 
tationally massive problems became economically possible. Such problems include, 
for example, solution of sets of partial differential equations over sizable grids, and 
multiplication, inversion, or determination of eigenvalues and eigenvectors of large 
matrices. 

An example of a parallel computer is the ILLIAC IV.* This computer is es- 
sentially an array of coupled arithmetic units driven by instructions from a common 
control unit. Each of the arithmetic units, called processing elements (PE's), have 
2048 words of 64-bit memory with an access time under 420 nanoseconds. Each PE 
is capable of 64-bit floating-point multiplication in about 550 nanoseconds. Two 
32-bit floating-point operations may be performed in each PE in approximately the 
same times. The PE instruction set is similar to that of conventional machines with 
two exceptions. First, the PE's are capable of communicating data to four neigh- 
boring PE's by means of routing instructions. Second, the PE's are able to set their 
own mode registers to effectively disable or enable themselves. For a more detailed 
description of this system, the reader is referred to [2], [8], [9],.[12]. 

The purpose of this paper is to introduce modified Jacobi and Jacobi-like algo- 
rithms for the computation of the eigenvalues and eigenvectors of large real sym- 
metric or complex Hermitian matrices, and real nonsymmetric matrices, respectively, 
that are suitable for a parallel computer. 

2. Jacobi's Algorithm. In the classical method of Jacobi (1846), [13], a real 
symmetric matrix is reduced to the diagonal form by a sequence of plane rotations 
Ak+l = RkARA (k = 1, 2, * ), where A, = A is the original matrix and each ro- 
tation Rk a R(p, q, a"') in the p, q plane through an angle atk eliminates the off- 
diagonal element a(') (and hence a'*'), and affects only elements in rows and columns 
p and q. See the Appendix for the appropriate value of at(k) to annihilate the element 
a'). Because of symmetry, only the off-diagonal elements above the main diagonal 
are considered in what follows. 
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It is possible, however, to modify the present Jacobi algorithm for a parallel 
computer so as to eliminate more than one off-diagonal element. For example, for a 
matrix A of order 4, if the orthogonal transformation R is chosen as, 

(2.1) R - ? C2 2 

-SI 0 CI 0 

_ ? -S2 0 C2J 

where c, = cos a1, si = sin a, (i = 1, 2), then RAR' would have zero elements in 
positions (1, 3) and (2, 4) provided that the angles a, and a2 are properly chosen. 
a, and a2 are determined by (all, a33, a13) and (a22, a44, a24), respectively. 

Define m by [(n + 1)/2], where n is the order of the matrix A and [x] is the greatest 
integer less than or equal to x. Let each (2m - 1) orthogonal transformations be 
denoted by a sweep. Observing that there are n(n - 1)/2 off-diagonal elements, 
and that the maximum number of these elements which can be annihilated by an 
orthogonal transformation of the type (2.1) is [n/2], then the modified Jacobi algo- 
rithm will attain maximum efficiency of parallel computation if the following two 
conditions are satisfied: 

(i) Each orthogonal transformation Rk should be constructed so as to annihilate 
[n/2] off-diagonal elements. 

(ii) Each sweep should annihilate each off-diagonal element only once, i.e., each 
of the (2m - 1) orthogonal transformations in a sweep should annihilate different 
[n/2] off-diagonal elements. 

Several annihilation regimes that satisfy the above requirements are possible. 
Two different regimes are discussed below. 

First Annihilation Regime. For a given sweep, each of the (2m - 1) orthogonal 
matrices Rk consists of the elements, 

(k) - R1k) = Cos ka) Rpa -R(k) = sin (a, 
. p < )s (2.2) RPI) =q cos4; =- , P(sin 31 ~ <q 

= -sin a(A), p> q, 

where p and q are sequences defined by 

(a) for k = 1, 2, * . I, m- 1, 

q= m - k + 1, m- k + 2, ... ,n -k 

p (2m-2k+ 1)-q, m-k+ I _ q? 2m-2k, 

(2.3) =(4rm-2k)-q, 2m-2k < q < 2m-k- 1, 

=n, 2m2 -k- 1 < q, 

(b) for k = m, m + 1, *-* , 2m- 1, 

q = 4m -n-k, 4mr -n-k +1, I , 3m-k- 1, 

p = n. q < 2m-k + 1, 

(2.4) = (4rm-2k)-q, 2m-k + I < q < 4m-2k- 1, 

= (6m -2k -1)-q, 4m- 2k- 1 < q. 
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The remaining elements of R, are zero except for ni odd, then RI"-k2mk = 1. For a 
given k, the angles a( are determined for all (p, q) such that at eliminates the 
element aces; see the Appendix. 

Let n = 8 and k = 2, then the pairs (p, q) are given by {(2, 3); (1, 4); (7, 5); (8, 6)} 
and R2 is of the form 

-~~~~14 
R (21 R (4) 

F22 `23) 

R 23 R33 

-a(2) -(R) 

I 66 68 

(2). (2 _'g (2(2) 

-R (27)--,--- (2)(2) 
-R68 R88 

while for k 7 the pairs (p, q) are 1(8, 1); (7, 2); (6, 3); (5, 4), and R7 is of the form 

11 R18 

1 22 27) 

l | R (7)-- -I - R (7) 
Rl33 R736 

(R(7) R (75) 

R R R 

I (7) R(7') R36 -6 

(7) '(7) 
'(7----- - --R77 

I 2777 

1(7) (7') _R (8-is - --- R88 

If the order of the matrix is odd, say n = 7, then for k = 3 the pairs (p, q) are given 
by {(l, 2); (7, 3); (6, 4)1 and R3 is of the form 
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R (3) R (3) 11 1 

-R(3) R(3) 12 22 

R (3) R ~~~~~(3) 
t33 137, 

.(4) ----R. (3) R 
44 ~ . P 

I 1 I 

46 66 

-R() R (3) 
37 77 

For example, in a given sweep, denoting each element eliminated in the kth 
transformation by the integer k, the patterns of the annihilated elements for matrices 
of orders 16 and 15 are shown below. 

6 ~ ? 0 ? 4 ?2 

*6 @ 5 @2 4 @ 3 @ 2 (D I 08@ 
* 5 0 4 0 3 020 ( 

* 3 02 1? 0. ? 

3 (i 2( 1 (i)rE)6 |) 

* 2 @1 @@7 6.@, 

* 1(i)g)7 a 6 8 51@ 

* )7 @G 6 (i 5(8'i) 

*?70 6 ? 5 4::, 

*0@5 0 4 ?'6 

*0(D3 ?: 
* 3 243 

i2 3 

15X15 

16x16 

Second Annihilation Regime. This regime satisfies conditions (i) and (ii) for matrices 
of order n = 27, where -y is an integer. The elements of each orthogonal transforma- 
tion, in a given sweep, Rk (k = 1, 2, *., n - 1) are given by (2.2). For k = 1, 
2, ... , n/2, the pairs (p, q) are defined by 

q =2, 4, 6, **, n, 

(2.5) p= q + (n-2k + 1), q < 2k, 
- q-2k + 1, q ? 2k. 

Let n = 8 and k = 3, then the pairs (p, q) are {(5, 2); (7, 4); (1, 6); (3, 8)} and R3 
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is of the form 

R(1-- R (6) 

- 3~1~ i_-R (3) | 

I I I I I 

~R16)1 125-- I 
44 4~~77 

38 88 

In order to construct the orthogonal transformations R1 for k = n/2 + 1, n/2 + 
2, * * *, n - 1, consider the sequence L = 1, 2, * * *, y - 1. For each value of L, 
there are N = 2 -L-1 orthogonal matrices R1 given by 

(2.6) Rt = diag (H(k), H( . Hk) 

where t = 2L-1 k = n(l 2 L) + 1, and I = 1, 2, , N. The sequences p and q 
for each H.' (M = 1, 2, * , t), are defined by 

p = i + 4N(M - 1), i = 1, 2, *,2N, 

q = p + 2(N + I - 1) - 2N[O(1)], 

where 

0(1) =O, i + 2(N + I- 1) < 4N, 

- 1, otherwise. 

Let n = 8, L = 2, and I = 1, then k = 7, and the pairs (p, q) are given by {(1, 3); 
(2, 4); (5, 7); (6, 8)} and R7 is of the form 

IR (7) ------R(7) ,1i 113 

13 - 3 
I I 

R24 ----- R44 

R(7) ------ R (7) 

R (67)--!----R (7) 66 1 68 

57 77 I 

' (7) (7) 
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The pattern of the annihilated elements in one sweep for a matrix of order 16 
is shown below, where those elements annihilated in the kth transformation are 
denoted by the integer k. 

*1 2 @ 3 (8 4 (i) 5 (@ 66(H) 7 02 8 
* 7 8 70 6 (0 5 0 4 0 3 0 2 0 

* (i) 2a 3 ( 4 0 5 6( ii) 7 

* 80 7 6 5 0 4 0 0 3 
* 1 2 0 3 ( 4 ( 5 (@ 6 

* 80@70i6050(i40 
* 1(0 2 ) 3(i 4 i 5 

* 8 7 6 5 0 
* 1 0 2 0 3 0) 4 

*8 i)7 (6 (H) 

* 80767 0 * 1 (ia 

* 8070) 
*80 

* 1 

Using one quadrant of the ILLIAC IV (64 PE's), then for a 128 X 128 matrix, 
the 64 angles of each transformation are determined simultaneously, one angle per 
PE. Once the transformation matrix Rk is determined, the matrix Ak+, = RAkRt is 
computed in parallel [7]. Assuming that the matrix has converged, (using some cri- 
terion [13]), to the diagonal form after u sweeps, or after r - 1 = u(2m - 1) or- 
thogonal transformations, then the diagonal elements of A, = WA Wt are taken to be 
the eigenvalues of A. The columns of WL ( V=V- ... Vj' are the corresponding 
eigenvectors, where for the jth sweep Vj = H~m' (Rk)j (= 1, 2, ... , u). 

A similar algorithm as that described above [11] has been programmed in ILLIAC 
IV assembly language and successfully tested on an ILLIAC IV execution simulator [1]. 

3. A Jacobi-Like Algorithm for Nonsymmetric Matrices. Eberlein [3], [4] 
showed that for an n X n matrix A, complex in general, there exists a matrix U = 

III Uj(k, m) generated from a sequence of two-dimensional transformations U,(k, m), 
where (k, m) is the pivot pair, such that AL = U- 'AU is arbitrarily close to being 
normal, i.e., the matrix (ALA* - A*AL) is arbitrarily small. At each stage of the 
iteration, based on the elements of the kth and mth rows and columns, the parameters 
of UL were chosen such that the decrement of the Euclidean norm of Al is given by 

N2(Al) - N2(U 'A1Uz) ? [1/3n(n - l)] N2(A1A* - A*AA) 

where N2(A) = i jaj l' 
In this paper, the above algorithm has been modified for parallel computation. 

The transformations U, are n-dimensional, and their parameters are based on all 
the elements of the matrix Al. A lower bound on the decrement of the Euclidean 
norm of A, is given by 

N2(At) - N2(UT'ALUj) 2 (1/4n)N2(AA* - A*AI). 
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Once the matrix is practically normal, one can use the optimal procedure of Gold- 
stine and Horwitz [5] for reducing it to the diagonal form; thus the eigenvalues and 
eigenvectors of A are obtained. 

Since a nondiagonable matrix cannot be similar to a normal matrix, then this 
procedure yields its best results for diagonable matrices (see Example 7 in [3, p. 84]). 

Let the original matrix A be real, diagonable, and of an even order n = 2r (if n 
is odd A is replaced by diag (A, v) of order n + 1), then it can be partitioned as 
follows 

All Al 2 ... Al 

(3 .1 ) A = A21 A22 * A2r 

( Arl Ar2 . * Arrj 

where each submatrix Ak*, (k, m = 1, 2, *9* , r), is given by 

(3.2) Akm = F ' 
2kl.21] 

Let 

Dkm (a2k-1,2m-1 - a2k.2m), 

(3.3) Ekm = (a2k-1.2m- a2k-2m-1) 

Bk. 
= 

(a2k-1. 2m + a2k,2m-1), 

and 

Kl(A) = Z (Dkm + Ekm), 
(3.4) 

km 

K2(A) = E DkmEkm. 
k m 

Assume also that A has been scaled such that N2(A) < 1, and denote the 
matrix (AAt - A'A) by C. 

LEMMA 1. Let A' = Q-'AQ, where Q = diag (Si, S29 . , Sr), and 
Si = S2 = * Sr = S is given by 

(3.5) S =[cs sm ] 
Lsinh Vt cosh 

Define VI by 

(3.6) tanh 44t = -2K2(A)/K,(A). 

Provided that K,(A) > 2IK2(A)I, the following relation holds 

(3.7) AN2(A) ? K2(A)/I1(A), 

where AN2(A) = N2(A) - N2(A') is the decrement of the Euclidean norm of A. 
Proof The elements of each submatrix Alm = 'AimS are given by 
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a2k.1.2m1 = a2k-1 2m-1 cosh2 V - a2k, 2 sinh2 V + IEkm sinh 2q/, 

(3.8) aa2k.2 = -a2k-1,2mn- sinh2 V/ + a2k 2m cosh2 VI -1 Ek sinh 2q/, 

a2k-1.2 =. Dk^ sinh 2 V/ + a2k1, 2m cosh2 V - a2k. 24- sinh2 i6, 

a2kl2m1 = -2 Dkm sinh 2V/ - a2k- 1, 2m s inh2 V/ + a2k. 2m-1 cosh2 it'. 

Therefore, 

N2(A'm) = N2(Akm) + (D 2m + 
Ekm) 

sinh2 2 / + DkmEkm sinh 4 V/ 
and consequently, 

(3.9) AN2(Akm) =- DkmEkm sinh 4V/ - '(D2m + Em)(cosh 4V/ - 1). 

Since N2(A)= Sk~m N2(Aim), then 

(3.10) AN2(A) = -1(cosh 4V/ - l)KI(A) - (sinh 4q/)K2(A). 

A necessary condition for AN2(A) to be an extremum with respect to V/ is 
(a/at6) AN2(A) = 0; this yields relation (3.6), 

tanh 4V' = -2K2(A)/K1(A). 

From the definition (3.4), it is clear that Ki(A) _ 2 IK2(A)j. Excluding for the time 
being the case K1(A) = 2jK2(A)j, then the second derivative of AN2(A) with respect 
to VI evaluated for VI in (3.6) is given by 

(3 .1 1) -8K1(A)[1 - (4K2 ( A)/K21(A))](cosh 4q/) 

and is less than zero. Thus, for the choice (3.6) of V/, AN2(A) achieves its maximum 
value, 

(3.12) AN2(A) = 4Kj(A)[1 - 11 -(4K (A (A)) ] 

which vanishes only if K2(A) = 0. Since one is considering the case K,(A) > 2 IK2(A)j, 
then by the binomial theorem, 

(3.13) (1 _ 4K2(A)/K2(A))1/2 = 1 - I (4K2(A)/K,2(A)) - 1(4K2( A)/K (A))2 

and (3.12) yields the relation (3.7). If K1(A) 2 jK2(A)j, then from (3.10), AN2(A) is 
given by IK,(A)[1 - {(1 -t tanh 4,6)/(1 - tanh2 4q/)112l]. Choosing tanh 4V/ = 

( - e2)/(1 + e2), where E is a small number, then AN2(A) = 2(1-e)K1(A) which 
is greater than zero. 

LEMMA 2. Let A' = PtAP, where P is the orthogonal transformation, 

(3.14) P = diag (T1, T2, T.,), 

in which 

(3.15) Tk 
c 

r Ok sifk] (k = I,2, . 
r). 

-s in Ok COS SPk 

Then, if qP is determined by 

(3.16) tan 2cpk =-2k-1,2k-1 C2k,2k 
2C2k-1,2k 
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where cii are the elements of the matrix C = AAt - A'A, 

(3.17) K2(A') > N 2(C). 

Proof. The 2 X 2 diagonal submatrices Ck, of the matrix C can be expressed as 

(3.18) Ck = [Akm A'n - AnkArk], k = 1, 2, , r. 
m-I 

Therefore, 
r r 

(3.19) : Ckk = E [Akm Akm - A'm Akm] 
k-I km-1 

where 

e _ t ~~Ek.Bkm DkmEk. 

(3.20) (AkmA n - A'1 Akm) F 

L_- Dkm.Ekm - Ek.,flkmj 

Equating the off-diagonal elements of the left- and right-hand sides of (3.19), 

(3.21) C2k-1,2k = - DknEkm = -K2(A). 
k-i km 

Consequently, if the orthogonal matrix P is chosen such that the off-diagonal ele- 
ments C2k-1,2k, for all k, attain their maximum positive values, then the inequality 
(3.17) is achieved. To show that, consider the matrix C' = A'A" - A"A'. Since 
A' = PtAP, then C' = PtCP, and the elements of the diagonal submatrices C, = 

TCkTk are given by 

C2k-1,2k = C2k-1,2k COS 2(pk + 2(C2k-1,2k.1 - C2k,2k) sin 2(Pk, 

1 2 2 

(3.22) C2k-1,2k-i = C2k-1.2k-i COS (Pk + C2k,2k sin (Pk - C2k-1,2k sin 
2?Ok, 

= .2 C Ck2k 'P 
C2k,2k = C2k-1,2k-1 Sin f(k + C2k,2k (Pk + C2k-1,2k sin 25Ok, and 

C2k,2k-i = C2k-1, 2k. 

Hence, for C/2*k 2k to be an extremum, (3.16) must hold. Also, for the choice (3.16) 
of (Pk, the second derivative of C2'k-.2k with respect to 'Pk is given by 

(3.23) -(h2/C2-1,2k) cos 2(Pk, 

where h = [4c2k-1,2k + (C2k-1,2k-i - C2k,2k)2] . As a result if cos 2IN is of the same 
sign as C2k-1,2k, C2k-1,2k attains its maximum value. Restricting 'Pk to the interval 
[0, ir], the elements of Tk are given by 

(3.24) sin 2Pk = 3 - (c2ki1,2k/h), cos (Pk = 2 + (c2k1.2k/h), 

in which sin (Pk > 0 and cos 'pk is of the same sign as (C2Ul,2kl - C2,2k). The maxi- 
mum value of C~k-12k turns out to be Uh, and 

1 C/~ 
C2k_1,2k-1 C2k, 2k 21(C2k-1,2k-1 + C2k,2k)1c 

Excluding the case when C2k-1,2k-1 = C2k,2k and C2k-1,2k = 0, which results in Tk 
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being the identity matrix and hence Ck-1,2 = 0, then from (3.21) one obtains the 
inequality 

(3.25) K2(A') > EC 1 2k. 
k-1 

Assuming that E. c'2_ 2,k _ (1/2n)N2(C'), then, from the fact that the Euclidean 
norm is invariant under orthogonal transformations and from (3.25), one obtains 
relation (3.17). 

From Lemmas 1 and 2, it can be seen that in order to obtain the largest possible 
value of AN2(A), the matrix A should be subjected to the orthogonal transformation 
M'AM where M is a permutation matrix determined as follows: Let A" = M'AM 
and C" = AA"' - A"'A", then M is chosen such that each 2 X 2 diagonal sub- 
matrix C*, has an element C"-1,2k of at least average absolute value of all the off- 
diagonal elements of C" if any, and/or the difference (c-l2k.. - c,21 ) different 
from zero. For example, in order to bring the off-diagonal element c",, (u < v), of 
maximum absolute value in the position (1, 2), M is given by I,,, I2, where Iii = I - 

(es - eiXe. - ej). Essentially, Ii'AI1, has the ith and jth rows and columns of A 
exchanged. 

After the matrix A is "prepared" by the transformation M, A' = PtA"P will 
produce a matrix C' whose off-diagonal elements CI2hk,2k are of such magnitudes that 
Lb-l C~b-1 is at least equal to (l/2n)N2(C). 

THEOREM. Let A = A, be a diagonable matrix with an even order n = 2r and 
N2(A) ? 1. Let Al+1 = U-'A1U1, where U1 = M1P1Q1. If these transformations 
areas defined as follows: 

(i) Ml is chosen as discussed above. 
(ii) P, = diag (TV1>, To 1, * *, TM1 ) in which 

rCOS (Pk sin vz)] 

Tk(~~~~o --s in (p") COS (p( - 

with 

tan 2pk l) = C2k-1, 2k-I 2k 2k 

2C2`k-1I,2k 

(iii) Q, = diag (S()1, *** , S(1)) in which 

S = Sl) = ... = S 1 = [ 
s s in 

sinh I,1 cosh t11i 
with 

tanh 4 = -2K2(A )/Ki(A ) 

where 

A = (MIP)t'AI(MIPI). 

Then, lima... N2(C1) = 0. 
Proof With no loss of generality, assume that Ml = I. By Lemma 2, K 2(AI) > 

(l/2n)N2(C1). From (3.3), (D(k))2 + (E( X)2 < 2N2(A(;), then (3.4) yields, K1(A,) s 
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2N2(A 1) < 2. Since the Euclidean norm is invariant under orthogonal transforma- 
tions, then Kl(AI) _ 2, and hence by Lemma 1, 

AN2(Al) > K2(A')/K1(A1) > I 
N2(C1). 2 1 ~~4n 

But since N2(A,) is a decreasing monotone function bounded below by E; JX, 2, 
where Xi are the eigenvalues of A, [10], then AN2(A I) -> as 1 --* o. Hence N2(C1) 0, 
and A, is arbitrarily close to being normal. 

Let A be a 128 X 128 matrix. Using one quadrant of the ILLIAC IV (64 PE's), 
the matrix can be stored in memory such that for a given mn the 2 X 2 submatrices 
Aki (k = 1, 2, ... , 64) are assigned to the mth PE. Once the matrix C is determined 
by parallel multiplication and stored in the same way, i.e., the kth PE contains the 
submatrix Ckk, the 64 angles (Pk can then be determined simultaneously. Also for 
each k the submatrices A*" = TkAkmTm are computed simultaneously for all m, 
hence the updated matrix A' = P1AP is computed with all the PE's working. Similarly 
the quantities Dim, EkI, and Bkm of the submatrices Al., and consequently the sub- 
matrices SVA' S are computed with full efficiency. This part of the algorithm has 
been coded and successfully tested on the ILLIAC IV simulator [1]. 

Once the matrix A is reduced to a matrix 1 which is practically normal, then for 
any diagonal submatrix 

_a~ aqq_ 

either ap = ap; or a = -a,,,, and a,, = dal, to within a reasonable computa- 
tional error. The matrix A is reduced to the diagonal form by the unitary trans- 
formations V*,iJVj (j = 1, 2, 3, * ), where Vi = Hl'' (R),), as in Section 2, 
is the transformation matrix of the Jth sweep. For each off-diagonal element ap- or 
a., above the diagonal, the elements of the diagonal submatrices of Rk are given by 

()ak) 
(k 
.d) (a) a,( = p 

the elements pMR(k) R R(k) and RM are determined as in Section 2. 
(b) l4Qa - P and PP= aq ; 

M (k) I M~~~~~~~~~~~~~(C (I1C)1 R =R~= V2; R~. =R~,, = - where i=(-1)1/2 [5]. 

Denoting the resulting matrix by A = Y-VAY, the diagonal elements of A are 
then the eigenvalues of A, and the columns of the matrix Y = (JI~ U1)(fl, V;) are 
the corresponding eigenvectors. 

4. Acknowledgment. The author would like to thank Professor Daniel L. 
Slotnick, Director of the Center for Advanced Computation, University of Illinois, 
for introducing him to the subject of parallel computation and for providing en- 
couragement and guidance throughout the investigation. Special thanks go to the 
referee for his valuable comments and criticism of the presentation. 

Appendix. The orthogonal matrix R(p, q, at(k)) differs from the identity matrix 
by a 2 X 2 diagonal submatrix whose elements are 
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(A.1) R = R = cos ak; R = - =R sin (k) 

where p < q. In order to eliminate the off-diagonal element a'*', the angle aa is 
chosen such that 

(A .2) tan 2a ( ) ( 

in which a(' is restricted by la() I ? ir/4, [6]. Let 

tk = I2a , Xk = la - a (4o + 4) 1; 

then 

(A.3) Cos2 aM = _ XI- k-; sin a = -1 ( ) 

Since la('n) I ir/4, then cos a() will always be taken positive and sin a(' will be of 
the same sign as [2a< ?/(a k -a 
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